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From the literature it is known that spectral least-squares schemes perform poorly with
respect to mass conservation and compensate this lack by a superior conservation of
momentum. This should be revised, since the here presented new least-squares spectral
collocation scheme leads to an outstanding performance with respect to conservation of
momentum and mass. The reasons can be found in using only a few elements, each with
high polynomial degree, avoiding normal equations for solving the overdetermined linear
systems of equations and by introducing the Clenshaw–Curtis quadrature rule for imposing
the average pressure to be zero. Furthermore, we combined the transformation of Gordon
and Hall (transfinite mapping) with our least-squares spectral collocation scheme to dis-
cretize the internal flow problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Spectral methods (see, e.g. [2,10,26,6]) employ global polynomials for the numerical solution of differential equations.
Hence they give very accurate approximations for smooth solutions with relatively few degrees of freedom. For analytical

data exponential convergence can be achieved.
If one deals with problems with non-smooth solutions the usual (global) spectral approach yields very poor approxima-

tion results. To avoid these difficulties the original domain can be decomposed into several sub domains and least-squares
techniques can be applied, see, e.g. [11–16,22,23,28–34]. Least-squares techniques for such problems offer theoretical and
numerical advantages over the classical Galerkin-type methods which must fulfill the well-posedness (or stability) criterion,
the so called LBB condition (see [5]). The advantage of least-squares techniques is that they lead to positive definite algebraic
systems which circumvent the LBB stability condition, see, e.g. [1,18–21]. One very special least-squares technique is the
least-squares spectral element method. These least-squares spectral element methods for the Stokes problem were first
introduced by Gerritsma and Proot in [31,32]. Spectral least-squares for the Navier–Stokes equations were first presented
by Pontaza and Reddy in [28–30], followed by Gerritsma and Proot in [34]. Heinrichs investigated least-squares spectral col-
location schemes in [13–16] that lead to symmetric and positive definite algebraic systems which circumvent the LBB sta-
bility condition. Furthermore, Heinrichs and Kattelans presented in [16,23] least-squares spectral collocation schemes where
they improved the conditions numbers of the algebraic systems, considered different types of decompositions of the domain
and different interface conditions between the elements for the Stokes and Navier–Stokes equations.
. All rights reserved.
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Here, we consider internal flow problems to investigate the mass and momentum conservation of the least-squares spec-
tral collocation method (LSSCM). A typical example of such a flow problem is a small channel of width h in which a cylinder
with diameter d moves along the centerline of the channel, see, e.g. [4,35].

In [3,4] it has been shown that the LSFEM leads to an unsatisfactory velocity profile along the smallest cross-section be-
tween the channel wall and the cylinder. Using this calculated velocity profile to calculate the mass flow through the cross-
section it has been observed that the calculated mass flow is significant lower than the mass inflow into the channel.

The important questions are:

1. Why are least-squares methods more susceptible to loss of mass conservation than, e.g. Galerkin-type methods?
2. How important is mass conservation for the overall performance of the numerical scheme?

The main reason why least-squares methods are more susceptible to loss of mass conservation than Galerkin methods is
that they are based on minimization of a functional which includes the continuity equation. On the contrary, within Galer-
kin-type methods the mass conservation, i.e. r � u ¼ 0 is a constraint. Because of this, the continuity equations plays not
such an significant role in the least-squares formulation as in the Galerkin formulation. Thus, it is clear why least-squares
methods are more susceptible to loss of mass conservation than ‘‘direct methods”.

This insight is the key for the second question. To discuss the overall performance, we have not only to discuss the mass
conservation but also the conservation of momentum. Thus, the conservation of momentum has to be verified, too.

One way overcoming the problem of the LSFEM is using the so called restricted LSFEM, see [4], which is based on the
least-squares functional with the extension of mass conservation r � u ¼ 0.

Proot and Gerritsma have shown in [33,35] that least-squares spectral element methods (LSSEM) lead to good results for
such flow problems, since the LSSEM compensate the loss of mass conservation by a superior conservation of the momentum
equations.

In this paper we consider the least-squares spectral collocation method (LSSCM) and we will show that our method leads
to superior mass and momentum conservation.

Furthermore, our approach has the following advantages:

� equal order interpolation polynomials can be employed
� it is possible to vary the polynomial order from element to element
� improved stability properties for small perturbation parameters in singular perturbation problems [11] and Stokes or

Navier–Stokes equations [13–16,23,31,32,34]
� good performance in combination with domain decomposition techniques
� direct and efficient iterative solvers for positive definite systems can be used
� implementation is straightforward.

The paper is organized in the following way. In Section 2, the internal flow problem is described. Section 3 introduces the
first-order formulation of the Stokes equations. The least-squares spectral collocation scheme and the discretization is pre-
sented in Section 4. The numerical results of our simulations are discussed in Section 5, where we present our results in Sec-
tion 5.1 and compare our results with the ones in the literature in Section 5.2. The conclusion is presented in Section 6.
2. The problem set-up

In order to investigate the mass and momentum conservation of our LSSCM we use the same test case as in [4,33], [35] to
compare our results with those. The flow problem is defined by a cylinder of diameter d ¼ 1 which moves at a speed of one
along the centerline of a channel of width h ¼ 1:5, see Fig. 1.

The domain of the channel is defined as a rectangle and the center of the cylinder is located at the origin, i.e. we solve the
Stokes equations on the domain
X :¼ Xc n K;
where Xc :¼ ½�1:5;3� � ½�0:75;0:75� and K :¼ fðx; yÞ 2 R2 : x2 þ y2 < 0:52g.
The boundary conditions of the velocity are given by
uj@X :¼ ½1;0�T on @Xc;

½0; 0�T on @K:

(

3. The Stokes problem

In order to apply least-squares the Stokes problem is transformed into an equivalent first-order system of a partial dif-
ferential equation. This is accomplished by introducing the vorticity x ¼ r� u as an auxiliary variable. By using the identity
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Fig. 1. The problem set-up.
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r�r� u ¼ �Duþrðr � uÞ

and the incompressibility constraint r � u ¼ 0 we obtain
r�xþrp ¼ f in X; ð1Þ
r � u ¼ 0 in X; ð2Þ
x�r� u ¼ 0 in X; ð3Þ
where uT ¼ ½u1;u2� denotes the velocity vector, p the pressure and fT ¼ ½f1; f2� the forcing term.
Since the pressure is through (1)–(3) only determined up to a constant we have to introduce an additional condition for

the pressure. This is done by imposing the average pressure to be zero; i.e.
Z
X

pdx ¼ 0: ð4Þ
Another way of dealing with the pressure constant is imposing the pressure in one point of X. In [16] and [23] we have seen,
that it is better to use (4) since this leads to overdetermined linear systems of equations with lower conditions numbers.
Hence, the accuracy can be increased since the round-off errors do not have such a big influence to the approximations.

Using the formulation (1)–(3) the Stokes equations can be written as
0 0 @
@x2

@
@x1

0 0 � @
@x1

@
@x2

@
@x2

� @
@x1

1 0
@
@x1

@
@x2

0 0

0BBBBB@

1CCCCCA
u1

u2

x
p

0BBB@
1CCCA ¼

f1

f2

0
0

0BBB@
1CCCA in X: ð5Þ
4. The least-squares spectral collocation scheme

For the spectral approximation we introduce the polynomial subspace
PN ¼ fPolynomials of degree 6 N in both variables x1; x2g:
Now all unknown functions are approximated by polynomials of the same degree N, i.e. u1;u2;x; p are approximated by
interpolating polynomials uN

1 ;u
N
2 ;xN; pN 2 PN . Furthermore, we have to introduce the standard Chebyshev Gauss–Lobatto

(CGL) collocation nodes which are explicitly given by
ðni;gjÞ ¼ � cos
ip
N

� �
;� cos

jp
N

� �� �
; i; j ¼ 0; . . . ;N: ð6Þ
In the following we write the spectral derivatives. First one has to introduce the transformation matrices from physical space
to coefficient space. Since we employ a Chebyshev expansion we obtain the following matrix:
T ¼ ðti;jÞ ¼ cos j
ðN � iÞp

N

� �� �
; i; j ¼ 0; . . . ;N:
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Further, we need the differentiation matrix in the Chebyshev coefficient space which is explicitly given by bD ¼ ðd̂i;jÞ 2
RNþ1;Nþ1 with
d̂i;j ¼
2j
ci
; j ¼ iþ 1; iþ 3; . . . ;N;

0; else

(

and
ci ¼
2; i ¼ 0;
1; else:

�

Now we are able to write explicitly the spectral derivative matrix D for the first derivative which is given by
D ¼ T bDT�1 2 RNþ1;Nþ1: ð7Þ
The spectral operator can be efficiently evaluated by Fast Fourier Transformations (FFTs) in OðN log NÞ arithmetic operations.
We further introduce the identity matrix I 2 RNþ1;Nþ1. By tensor product representation A� B ¼ ðAbi;jÞi;j we are now able to
write the spectral derivatives:
@

@x
ffi D1 :¼ D� I;

@

@y
ffi D2 :¼ I � D: ð8Þ
Next we have to realize the discrete formulation of Eq. (4). This is performed by the Clenshaw–Curtis quadrature rule (see,
e.g. [27]):
Z

Xs

pdx ffi
XN

i¼0

XN

j¼0

xixjpðni;gjÞ;
where Xs :¼ ½�1;1�2 denotes the standard domain, ðni;gjÞ the Chebyshev Gauss–Lobatto nodes on Xs and
xi :¼

1
N2�1

; i 2 f0;Ng;

4
N

PN2
j¼0

1
�cj

cos 2pij
Nð Þ

1�4j2
; 1 6 i 6 N � 1

8>><>>:

with
�cj :¼
2; j 2 f0;N=2g;
1; 1 6 j 6 N=2� 1

�

the integration weights.

We use the Clenshaw–Curtis quadrature rule since this is the appropriate quadrature rule for the Chebyshev Gauss–Lob-
atto nodes.

One could also use Gauss Legendre or Gauss Lobatto-Legendre nodes. In the numerical results there is no big difference.
The advantage of the Chebyshev nodes is the fact that they are explicitly given and fast Fourier transforms (FFTs) are
available.

Furthermore, we have to decompose the domain X into quadrilaterals (some with curved boundaries). Since for spectral
least-squares methods it is better to use only a few elements, each with high polynomial degree (see, e.g. [7]), we here only
use 12 elements, i.e.
X ¼
[12

i¼1

Xi;
where Xi; i ¼ 1; . . . ;12 are defined as in Fig. 2.
In order to apply our least-squares spectral collocation scheme, we have to define a transformed problem on the square.

Instead of introducing polar coordinates we prefer the transfinite mapping of Gordon and Hall, see, e.g. [2,8,9,12]. The advan-
tage of the transfinite mapping of Gordon and Hall is that it is a very simple transformation where no singularities (as by
using polar coordinates) occur, see, e.g. [12].

To construct the mapping Wi of the square Xs with boundaries Cm into one of the quadrilaterals Xi with (curved) bound-
aries bCi

m we use the mappings
pi
m : Cm ! bC i

m; i ¼ 1; . . . ;12; m ¼ 1; . . . ;4:
As an example, in the following we write the functions p2
m ; m ¼ 1; . . . ;4, for element X2:
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Fig. 2. Decomposition of X into 12 elements.
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p2
1ðnÞ ¼

1
2 ð�0:5þ 0:75Þn� 0:75� 0:5½ �

0

 !
;

p2
2ðgÞ ¼

�0:75
1
2 ð0þ 0:75Þg� 0:75þ 0½ �

 !
;

p2
3ðnÞ ¼

1
2 � 1

2
ffiffi
2
p þ 0:75

� �
n� 1

2
ffiffi
2
p � 0:75

h i
1
2 � 1

2
ffiffi
2
p þ 0:75

� �
n� 1

2
ffiffi
2
p � 0:75

h i
0B@

1CA;

p2
4ðgÞ ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:52 � 1

2 0þ 1
2
ffiffi
2
p

� �
g� 1

2
ffiffi
2
p þ 0

h in o2
r

1
2 0þ 1

2
ffiffi
2
p

� �
g� 1

2
ffiffi
2
p þ 0

h i
0BB@

1CCA;

where ðn;gÞ 2 Xs.

Following Gordon and Hall, the mapping W2 : Xs ! X2 can be written explicitly in terms of the p2
m as:
W2ðn;gÞ ¼
1� g

2
p2

3ðnÞ þ
1þ g

2
p2

1ðnÞ þ
1� n

2
p2

2ðgÞ �
1þ g

2
p2

2ð1Þ �
1� g

2
p2

2ð�1Þ
� 	

þ 1þ n
2

p2
4ðgÞ �

1þ g
2

p2
4ð1Þ �

1� g
2

p2
4ð�1Þ

� 	
: ð9Þ
The whole discretization of X is shown in Fig. 3.
Since we are interested in the solution of a first-order partial differential equation we have to transform the first-order

partial derivatives from the coordinates ðn;gÞ 2 Xs into the coordinates ðx; yÞ 2 Xi; i ¼ 1; . . . ;12. The coordinates of Xi are gi-
ven as functions x ¼ xðn;gÞ and y ¼ yðn;gÞ. Hence, the transformation reads as follows:
ux

uy

� �
¼ 1

xnyg � xgyn

yg �yn

�xg xn

� �
un

ug

� �
:

At the interfaces between the elements we enforce pointwise C0 interface conditions of all functions, i.e. continuity of the
velocity, continuity of the vorticity and continuity of the pressure. One could also require (as Heinrichs and Kattelans in
[15,16,23]) continuity of both the functions and normal derivatives of u1;u2, continuity for p and no explicit interface con-
dition for x. In the numerical results there are no nameable differences concerning these two different types of interface
conditions (see [23]). The reason, we here use C0 interface conditions is, the resulting linear systems of equations have lower
condition numbers and the dimension of the matrices are smaller.

The corresponding discrete system of differential equations together with the discrete boundary, the discrete interface
conditions and the discrete version of (4) are written into a matrix A and compiled into an overdetermined system Az ¼ r
where the matrix A is given by
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Fig. 3. Discretization of X into 12 elements. In each element polynomial degree N ¼ 10 is used. This grid is called G12.
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A ¼

A1

. .
.

A12

MI

B

Mp

0BBBBBBBBB@

1CCCCCCCCCA
: ð10Þ
Here Ai (dense matrix), i ¼ 1; . . . ;12 denotes the discrete version of the matrix in (5) on the corresponding element Xi. The
matrix MI represents the discrete interface conditions, B the given discrete boundary conditions for the velocity components
u1 and u2 and Mp the additional discrete pressure condition in (4). In [16] we have shown, that these types of linear systems
of equations are really overdetermined and it is better to use QR decomposition for solving these systems instead of forming
the normal equations. The reason is, the normal equations square the condition numbers of the algebraic systems and be-
cause of this the round-off errors have a stronger influence. Hence, all overdetermined linear systems of equations in this
paper are solved by QR decomposition if we do not explicitly mention an other solver.

Furthermore, we compare the performance of our least-squares spectral collocation scheme with the performance of the
least-squares spectral element method of Gerritsma and Proot, see [33,35]. To do this we have to use the same decomposi-
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Fig. 4. Discretization of X into 86 elements. In each element polynomial degree N ¼ 4 is used. This grid is called G86.
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tion of the domain X, the same polynomial degrees and the same norms as used in [33,35]. The decomposition of the domain
as used by Gerritsma and Proot is shown in Fig. 4. The norms used for the computations are shown in the Section of the
numerical simulations.

5. Numerical simulations

In this section, we present the results of our scheme on both of the grids G12 and G86. First, we present the results on G12

and after that the results of our scheme on G86 are compared with the ones using the different methods of Gerritsma and
Proot in [33,35].

5.1. Results on G12

First, we consider a smooth model problem to verify the convergence rates of our new least-squares spectral collocation
scheme. This is demonstrated by means of an analogical model problem as in [16]. The exact velocity components and the
pressure are defined on X by
Table 1
Approx
diverge

N

2
4
6
8

10
12
14
16
18
20
u1ðx; yÞ :¼ sin
px
2

� �
cos

py
2

� �
;

u2ðx; yÞ :¼ � cos
px
2

� �
sin

py
2

� �
;

pðx; yÞ :¼ 1
4
ðsinðpxÞ þ sinðpyÞÞ þ 10ðxþ yÞ:
Calculating the discrete errors we use the discrete H1-error norm and the discrete L2-error norm which are given by
kvkH1 ¼ a
X12

k¼1

XN

i;j¼0

vðxk
i ; y

k
j Þ

2 þ @

@x
vðxk

i ; y
k
j Þ

� �2

þ @

@y
vðxk

i ; y
k
j Þ

� �2
" #1

2

;

kvkL2 ¼ a
X12

k¼1

XN

i;j¼0

vðxk
i ; y

k
j Þ

2

" #1
2

;

where ðxk
i ; y

k
j Þ denotes the collocation nodes on element Xk and a ¼ ½ðN þ 1Þ

ffiffiffiffiffiffi
12
p
��1.

In Table 1 we present the H1-errors of the velocity components, the L2-errors of the pressure and the divergence of the
velocity field.

We see the high spectral accuracy of our scheme. From polynomial degree four to polynomial degree six the error in the
pressure increases slightly, hereafter the error decreases exponentially. The reason of this performance is that our scheme is
not able to resolve the function in the best way since for polynomial degree six there are not enough degrees of freedom.
Increasing the d.o.f. and the collocation conditions (e.g. increasing the polynomial degree) our scheme shows consistently
high spectral accuracy.

For polynomial degree 20 we see that the error of the divergence of the velocity field increases slightly. The reason is that
the round-off errors disturb the spectral accuracy because of the large conditions numbers of the algebraic systems. This is a
well-known performance of our scheme, see, e.g. [16,23].

Next, we simulate the problem described in Section 2. To compare our results with those of Chang and Nelson in [4], we
calculate the maximum of the velocity component u1 on the line between ð0;0:5Þ and ð0;0:75Þ (the cross-section, defined as
c2). Furthermore, we compute the loss of mass in the cross-section, as in [35], which is given by
M :¼ 1
2

Z
c1

u1 ds�
Z

c2

u1 ds; ð11Þ
imation errors of the smooth model problem in X on G12. Discrete H1-error of the velocity, discrete L2-error of the pressure and discrete L2-error of the
nce of the velocity field.

ku1 � uN
1 kH1 ku2 � uN

2 kH1 kp� pNkL2 kr � uNkL2

5:013 � 10�1 4:840 � 10�1 7:200 � 10�1 7:727 � 10�2

1:638 � 10�1 1:172 � 10�1 3:818 � 10�1 3:825 � 10�3

8:487 � 10�2 2:963 � 10�2 6:484 � 10�1 3:092 � 10�4

4:103 � 10�3 2:430 � 10�3 2:634 � 10�2 3:543 � 10�5

1:654 � 10�4 1:087 � 10�4 3:785 � 10�4 2:032 � 10�6

5:858 � 10�6 4:680 � 10�6 8:978 � 10�6 5:373 � 10�8

2:175 � 10�7 2:267 � 10�7 4:707 � 10�7 9:149 � 10�10

1:316 � 10�8 1:286 � 10�8 2:106 � 10�8 5:083 � 10�11

2:338 � 10�9 2:337 � 10�9 3:977 � 10�9 6:556 � 10�12

2:420 � 10�10 2:330 � 10�10 3:926 � 10�10 7:297 � 10�12
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where c1 is defined as the line between ð�1:5;�0:75Þ and ð�1:5;0:75Þ. These line integrals are approximated by the Clen-
shaw–Curtis quadrature rule, again. To avoid the influence of the quadrature rule to the approximations of M in (11) and
thus the conclusions drawn from the date, we again use refined grids for the approximation of the integrals. Our simulations
have shown that the numerical integration on refined grids has no effect on the conclusions, since the error between the first
two computed values is less than 10�10.

The percentaged loss of mass is denoted by M%. The results of our computations are shown in Table 2.
Comparing our results (especially for large polynomial degrees) with the result of Chang and Nelson in [4] (Figs. 8 and 9 in

their paper), we see that our scheme leads to very good results. The maximal value of u1 along c2 of Chang and Nelson is 4:17.
Chang and Nelson had to use a ‘‘restricted LSFEM” to obtain this value. Using their ‘‘mesh-dependent, weighted LSFEM” they
obtain very bad results. Here, we obtain the very good results shown in Table 2 with our scheme directly, e.g. without any
further modification of our scheme. Furthermore, from the table we observe that our scheme leads to an outstanding per-
formance with respect to conservation of mass along the cross-section. Comparing the percentaged loss of mass in the
cross-section of our scheme with the least-squares spectral element scheme of Gerritsma and Proot in [33,35] we see that
our scheme leads to much better results. The largest number of d.o.f of our scheme is 17,328 whereas the largest number of
d.o.f in [33,35] is 27,864 and they only reach a loss of 9.8% with their least-squares scheme. That means that our scheme
leads to much better results with less d.o.f. This performance of spectral least-squares schemes was already observed in
[16]. The spectral least-squares scheme leads to improved results when only a few elements each with high polynomial de-
grees is used, instead of using a lot of elements each with low polynomial degrees.

We do not only obtain very good results with our scheme for the maximum of u1 along the cross-section but also for all
values of u1 along the cross-section, see Fig. 5. The values calculated here (for large N), show the same performance as the
corresponding ones in [4] for the ‘‘restricted LSFEM” of Chang and Nelson (see Fig. 9 in their paper).

Furthermore, in Fig. 6 we show the profile of velocity component u1 in the whole domain X.
Comparing this figure with the corresponding ones in [4] we again see, that our scheme leads to very good approxima-

tions. Further, our scheme is not only able to resolve the velocity in the critical cross-section c2 but even around the whole
cylinder.

Next, we check mass and momentum conservation of our least-squares spectral collocation scheme in the whole domain
X. Since we collocate on CGL nodes, we verify the conservation of mass and momentum on Chebyshev Gauss (CG) nodes.
Using CGL nodes to check mass and momentum conservation is not the right way, since then one only studies the least-
squares errors of our scheme and not the ‘‘really” conservation properties. The CG nodes on the standard domain Xs are
explicitly given by
Table 2
Maximu

N

2
4
6
8

10
12
14
16
18
ðnCG
i ;gCG

j Þ ¼ � cos
ð2iþ 1Þp

2N þ 2

� �
;� cos

ð2jþ 1Þp
2N þ 2

� �� �
; i; j ¼ 0; . . . ;N: ð12Þ
The corresponding transformation matrix between physical and coefficient space is given by
TCG ¼ ðtCG
i;j Þ ¼ cos j

2ðN � iÞ þ 1
2N þ 2

p
� �

; i; j ¼ 0; . . . ;N: ð13Þ
Evaluating the divergence of the velocity field and the momentum equations on CG nodes we use the computed (on CGL
nodes) solutions of u;x and p and evaluate them on CG nodes. Hence, we need the matrix for the first derivative, which
is given by
DCG ¼ TCG bDT�1 2 RNþ1;Nþ1;
where bD and T are given as in (7). Transformations to obtain the CG nodes and the derivative matrices on the corresponding
element Xi; i ¼ 1; . . . ;12 of X are performed as described in Section 4, again.

In Table 3 we show the mass and momentum conservation of our scheme in the whole domain X using the discrete L2-
error norm and the maximum-error norm.
m value of u1 along c2; jMj and M% for different polynomial degrees N on G12.

maxfu1ð0; yÞ : 0:5 6 y 6 0:75g jMj M%

0:8417 4:465 � 10�1 7:829 � 101

1:0230 5:098 � 10�1 7:957 � 101

1:9020 3:232 � 10�1 4:695 � 101

4:1316 1:012 � 10�2 1:353 � 100

4:2020 2:081 � 10�4 2:775 � 10�2

4:2035 3:010 � 10�6 4:013 � 10�4

4:2036 2:593 � 10�7 3:458 � 10�5

4:2036 1:986 � 10�8 2:648 � 10�6

4:2036 9:915 � 10�9 1:322 � 10�6
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Fig. 5. Values of u1 along the cross-section c2 for different polynomial degrees N on G12.

Fig. 6. Profile of velocity component u1 in X for polynomial degree N ¼ 18 on G12.

Table 3
Mass and momentum conservation of our scheme with respect to the discrete L2 norm and the maximum norm on Chebyshev–Gauss nodes for different
polynomial degrees in X on G12. Approximations of the functions are computed on CGL nodes and evaluated on CG nodes.

N kr � ukL2 kr � uk1 kfkL2 kfk1
2 3:488 � 10�2 1:056 � 10�1 2:134 � 10�2 6:824 � 10�2

4 1:597 � 10�2 8:291 � 10�2 6:844 � 10�3 2:472 � 10�2

6 6:945 � 10�3 2:316 � 10�2 1:954 � 10�2 5:943 � 10�2

8 6:988 � 10�4 3:588 � 10�3 5:407 � 10�3 1:740 � 10�2

10 9:069 � 10�5 5:318 � 10�4 6:479 � 10�4 2:636 � 10�3

12 7:548 � 10�6 4:442 � 10�5 9:849 � 10�5 7:046 � 10�4

14 7:418 � 10�7 6:825 � 10�6 1:543 � 10�5 1:149 � 10�4

16 1:821 � 10�7 1:988 � 10�6 2:332 � 10�6 1:936 � 10�5

18 4:069 � 10�8 4:828 � 10�7 3:248 � 10�7 2:526 � 10�6
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In Table 3 we see that our scheme is able to fulfill mass and momentum conservation up to 10�8 and 10�7, respectively.
Hereby, it is disproved that least-squares schemes in general perform poorly with respect to mass conservation. Gerritsma
and Proot have already reported in [35], that spectral least-squares schemes have good conservation properties for such an
internal flow problem, since they lead to an superior conservation of momentum that compensate the lack in mass conser-
vation. For the standard LSSEM in [35] it is shown that for the first component of the momentum equations the absolute
error in the maximum norm equals about 10�1 and in the second component of the momentum equations the error in
the maximum norm equals about 10�4. Here, our scheme leads to a conservation of momentum that equals about 10�6 in
the maximum norm. Comparing this result with those of Gerritsma and Proot, we see that our scheme performs much better,
since the standard LSSEM of Gerritsma and Proot only conserves the momentum equations up to 10�1 using the maximum
norm, as we do (e.g. for both components of the momentum equation in one step).

Concerning conservation of mass, we see in Table 3 that our scheme leads to a superior conservation of mass, too. The
standard LSSEM in [35] conserves mass about 100. Here, our scheme again shows a better performance. In [4] it is reported
that restricted LSFEM leads to conservation of mass of about 10�4.

In Fig. 7 we show the pressure profile in X.
For the LSFEM in [4] the pressure was set equal to zero at point ð3;0Þ and for the LSSEM in [35] the pressure constant was

set equal to zero at point ð�1:5;0:75Þ. Using this approach, we have shown in [16,23] that the accuracy of the LSSCM is not as
high as using the additional condition (4), since (4) reduces the condition numbers of the linear systems of equations. It is
clear, that the pressure constant does not influence the conservation of momentum if exact arithmetic is used. But since we
only approximate the unknown functions numerically, the condition numbers of the linear systems of equations influence
the accuracy.

To see the influence of using QR decomposition instead of forming normal equations for solving the linear systems in
Fig. 8 we show kr � ukL2 for both techniques.

As we observe from Fig. 8 using QR decomposition leads to better results when the round-off errors become noticeable.
Using normal equations the divergence increases for N P 14. The reason is that round-off errors influence the accuracy. This
performance of our scheme was already observed in [16,23]. Furthermore, using QR decomposition we reach an accuracy of
10�8 whereas using normal equations leads only to an accuracy of 10�6. A disadvantage of using QR decomposition is the
larger amount of CPU-time. In Fig. 9 we compare the required CPU-time for solving the linear systems with QR decomposi-
tion and with normal equations.

An analog performance of the least-squares methods can be found in [17,37].

5.2. Results on G86: LSSCM versus LSSEM

Here, we compare the performance of our least-squares spectral collocation method (LSSCM) with the least-squares spec-
tral element method (LSSEM) in [33,35]. Consequently, we have to use the same spectral element grid, the same polynomial
degrees and the same norms as in [33,35]. The grid G86 consisting of 86 elements, where on each element the unknown func-
tions are approximated by polynomials of degree N is shown in Fig. 4.

Furthermore, in [33,35] a control volume ~X was defined in the computational grid to measure conservation of mass and
momentum which is presented in Fig. 10. In order to avoid interpolation of the data the boundary ~C of the control volume is
located along the edges of the elements of G86. In this control volume, conservation of mass and momentum should hold.
With f ¼ 0 in (1) the conservation of mass and momentum can be expressed by
Fig. 7. Pressure in X for polynomial degree N ¼ 18 on G12.
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Z
~X
r � ud ~X ¼ 0 ð14Þ
and
 Z
~X
�Duþrpd ~X ¼ 0: ð15Þ
Let now nT :¼ ½n1;n2� represent the outward unit vector and ~C the boundary of ~X. Using Gauss’s Theorem, (14) is equivalent
to
 Z

~C
n1u1 þ n2u2 d~C ¼ 0 ð16Þ
and (15) is equivalent to
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Z
~C

n1
@u1

@x
� p

� �
þ n2

@u1

@y
d~C ¼ 0 ð17Þ
and
 Z
~C

n1
@u2

@x
þ n2

@u2

@y
� p

� �
d~C ¼ 0; ð18Þ
where r � u ¼ 0 has been used in (17) and (18), respectively.
The integrals (16)–(18) are approximated by the Clenshaw–Curtis quadrature rule, again. As in [33,35] we approximated

these integrals on a refined, interpolated grid where the difference between the last two computed values act as an absolute
error bound. The idea of this approach was to ensure that the numerical integration has no effect on the approximations. Our
simulations have shown that the numerical integration on refined grids has no effect on the conclusions, since the error be-
tween the first two computed values is less than 10�10. Here, we used the Clenshaw–Curtis quadrature rule since this is the
appropriate one using CGL nodes. One could also use Gauss Legendre or Gauss Lobatto–Legendre nodes. In the numerical
results there is no big difference, see [36]. The advantage of the Chebyshev nodes is the fact that they are explicitly given
and fast Fourier transforms (FFT) are available.

We will not only compare the performance of our scheme with the performance of the least-squares spectral element
method but also with the weighted least-squares spectral element method, with the constrained least-squares spectral ele-
ment method and with the Galerkin spectral element method. For a in-depth description of these methods see, e.g. [33,35].
Here, we present only the basic ideas of these methods.

The least-squares spectral element method is based on the minimization of the least-squares functional
IðUÞ ¼ 1
2
krpþr�x� fk2

L2 þ kr � uk2
L2 þ kx�r� uk2

L2

� �
; ð19Þ
where U :¼ ðu;x; pÞ.
The weighted least-squares spectral element-method is based on the minimization of the least-squares functional
IW ðUÞ ¼
1
2
krpþr�x� fk2

L2 þWkr � uk2
L2 þ kx�r� uk2

L2

� �
; ð20Þ
which is based on (19) with an additional weighting of the continuity equation. With the weighting factor W the influence of
the continuity equation can be modified.

The constrained least-squares spectral element method is based on the minimization of (19) with the extension of mass
conservation, i.e. r � u ¼ 0. Lagrange multipliers are used enforcing mass conservation. The constrained least-squares spec-
tral element method is based on the Lagrangian functionalZ
LðUÞ ¼ IðUÞ þ
X
r � udX;
where IðUÞ is given in (19). Thus, this method leads to a saddle-point problem and not to a minimization problem as the
other methods.

The last method is the standard ‘‘mixed” Galerkin spectral element method which can be found in, e.g. [6,24]. Avoiding
spurious pressure modes, the PN � PN�2 formulation has been used, where the velocity is approximated by a polynomial of
degree N and the pressure by a polynomial of degree N � 2, see, e.g. [25].
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The numerical results of these four methods originate from [33,35]. Here, we show these results to compare our results
directly with the other methods. Since we here use a large number of elements, each with low polynomial degrees, we ex-
pect similar results of our least-squares spectral collocation method (LSSCM) compared to the least-squares spectral element
method (LSSEM) and not such superior improvements as shown in Section 5.1. The mass conservation properties of the dif-
ferent schemes are shown in Fig. 11, where the absolute value of the boundary integral (16) is shown as a function of the
polynomial degree. In Fig. 12 we compare the percentage loss of mass of the LSSCM and of the LSSEM, calculated in the
cross-section c2. In Figs. 13 and 14 we compare the conservation of momentum of the different numerical schemes, where
the absolute values of the boundary integrals (17) and (18) are plotted as a function of the polynomial degree. The overall
quality of the different numerical schemes is shown in Fig. 15. There, the sum of the absolute values of the mass integral and
the two momentum integrals is plotted as a function of the polynomial degree.

From Fig. 11 we observe, that our LSSCM leads to slightly improved results compared to the LSSEM.
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Fig. 11. Absolute value of line integral (16) for different polynomial degrees on G86. ð� þ �Þ LSSCM; ð���Þ LSSEM, ð� 4�Þ the constrained LSSEM, ð� 5�Þ
the weighted LSSEM with W ¼ 10; ð� .�Þ the weighted LSSEM with W ¼ 50; ð� /�Þ the weighted LSSEM with W ¼ 100; ð�}�Þ the weighted LSSEM with
W ¼ 500; ð�	�Þ the Galerkin spectral element method.
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Fig. 12. The percentage loss of mass calculated in the cross-section c2 for different polynomial degrees on G86. ð� þ �Þ the least-squares spectral collocation
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Fig. 13. Absolute value of line integral (17) for different polynomial degrees on G86. ð� þ �Þ LSSCM; ð���Þ LSSEM, ð� 4�Þ the constrained LSSEM, ð� 5�Þ
the weighted LSSEM with W ¼ 10; ð� .�Þ the weighted LSSEM with W ¼ 50; ð� /�Þ the weighted LSSEM with W ¼ 100; ð�}�Þ the weighted LSSEM with
W ¼ 500; ð�	�Þ the Galerkin spectral element method.

4662 T. Kattelans, W. Heinrichs / Journal of Computational Physics 228 (2009) 4649–4664
In Fig. 12 we observe that the LSSCM leads to slightly improved results for N ¼ 4 and N ¼ 8. Furthermore, the LSSCM leads
much faster to improved results than the LSSEM, see N ¼ 6.

From Fig. 13 we observe that our LSSCM leads to improved conservation of the x-component of momentum compared to
the LSSEM. In Fig. 14 we see that the LSSEM method leads to better conservation of the y-component of momentum. Com-
paring the performance of the LSSEM in Figs. 13 and 14 we see that the y-component of the momentum is much better con-
served compared to the x-component. The differences of conservation of the two components is about 10�3. Comparing the
same figures for the LSSCM we see that the conservation properties of the LSSCM are more consistent and we observe that
the difference of conservation of the two components is only about 10�1. Because of this it is clear that our LSSCM leads to
better results concerning the overall performance shown in Fig. 15.

Concluding, we can say that the LSSCM leads to slightly improved results compared directly to the LSSEM.
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6. Conclusion

We presented a new least-squares spectral collocation scheme, that leads to superior conservation of mass and momen-
tum for internal flow problems. The opinion that least-squares methods in general perform poorly with respect to mass con-
servation should be revised. The reasons that our LSSCM leads to much better results than the standard LSSEM are:

1. We use only a few elements (12), each with a high polynomial degree (up to 18). Gerritsma and Proot used in [35] more
elements (86) with lower polynomial degrees (up to 8).

2. We use a direct solver (QR decomposition) to solve the linear systems of equations. Avoiding solving by normal equations
leads to algebraic systems with reduced condition numbers. Because of this we have less influence of round-off errors, see
[16,23].

3. We did not set the pressure in one point, since we have shown in [16] that the better way to avoid the natural mode is
using the additional pressure condition in (4). Because of this we again reduced the condition numbers of the algebraic
systems and this leads to a more stable scheme, see [16,23].

4. We used the transformation of Gordon and Hall to discretize the internal flow problem. This leads to a high order approx-
imation of the curved boundaries.

Since all these changes influence the accuracy, in Section 5.2 we compared our results directly with the results of Ger-
ritsma and Proot in [33,35]. To do this we used the same grids, the same polynomial degrees and the same norms. The com-
putations have shown that our scheme leads to slightly improved results on G86. Using only a few elements as on G12 our
scheme leads to superior results which are further improved by solving the linear systems of equations by QR decomposition
instead of using normal equations with squared condition numbers.
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